19th Edition HARRISON'S MANUAL OF MEDICINE

KASPER FAUCI HAUSER LONGO JAMESON

GLOSSARY

٨	aortic second sound	EBV	Epstein-Barr virus	
A ₂ ABGs	arterial blood gases	ECG	electrocardiogram	
ACE	angiotensin converting	EEG	electroencephalogram	
ACL	enzyme	ELISA	enzyme-linked	
AF	atrial fibrillation	LLISA	immunosorbent assay	
AIDS	acquired immunodeficiency	EMG	electromyogram	
mbo	syndrome	ENT	ear, nose, and throat	
ALS	amyotrophic lateral	EOM	extraocular movement	
1120	sclerosis	ESR	erythrocyte sedimentation	
ANA	antinuclear antibody	Lon	rate	
ARDS	acute respiratory distress	FDA	US Food and Drug	
	syndrome		Administration	
bid	two times daily	FEV,	forced expiratory volume	
biw	twice a week	1	in first second	
bp	blood pressure	GFR	glomerular filtration rate	
BUN	blood urea nitrogen	GI	gastrointestinal	
CAPD	continuous ambulatory	G6PD	glucose-6-phosphate	
	peritoneal dialysis		dehydrogenase	
CBC	complete blood count	Hb	hemoglobin	
CF	complement fixation	Hct	hematocrit	
CHF	congestive heart failure	HDL	high-density lipoprotein	
CLL	chronic lymphocytic	HIV	human immunodeficiency	
	leukemia		virus	
CML	chronic myeloid leukemia	hs	at bedtime	
CMV	cytomegalovirus	HSV	herpes simplex virus	
CNS	central nervous system	ICU	intensive care unit	
СРК	creatine phosphokinase	IFN	interferon	
CSF	cerebrospinal fluid	Ig	immunoglobulin	
CT	computed tomography	IL	interleukin	
CVP	central venous pressure	IM	intramuscular	
CXR	chest x-ray	IP	intraperitoneal	
DIC	disseminated intravascular	IV	intravenous	
	coagulation	IVC	inferior vena cava	
DVT	deep venous thrombosis	IVP	intravenous pyelogram	

EDITORS

Dennis L. Kasper, MD, MA(HON)

William Ellery Channing Professor of Medicine, Professor of Microbiology and Immunobiology, Department of Microbiology and Immunobiology, Harvard Medical School; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts

Anthony S. Fauci, MD, ScD(HON)

Chief, Laboratory of Immunoregulation; Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

Stephen L. Hauser, MD

Robert A. Fishman Distinguished Professor and Chairman, Department of Neurology, University of California, San Francisco, San Francisco, California

Dan L. Longo, MD

Professor of Medicine, Harvard Medical School; Senior Physician, Brigham and Women's Hospital; Deputy Editor, *New England Journal of Medicine*, Boston, Massachusetts

J. Larry Jameson, MD, PhD

Robert G. Dunlop Professor of Medicine; Dean, Perelman School of Medicine at the University of Pennsylvania; Executive Vice President, University of Pennsylvania for the Health System, Philadelphia, Pennsylvania

Joseph Loscalzo, MD, PhD

Hersey Professor of the Theory and Practice of Medicine, Harvard Medical School; Chairman, Department of Medicine, and Physician-in-Chief, Brigham and Women's Hospital, Boston, Massachusetts

EDITORS

Dennis L. Kasper, MD Anthony S. Fauci, MD Stephen L. Hauser, MD Dan L. Longo, MD J. Larry Jameson, MD, PhD Joseph Loscalzo, MD, PhD

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright © 2016 by McGraw-Hill Education. Previous editions copyright © 2013, 2009, 2005, 2002, 1998, 1995, 1991, 1988 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-182854-3

MHID: 0-07-182854-0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-182852-9, MHID: 0-07-182852-4.

eBook conversion by codeMantra Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com.

NOTE: Dr. Fauci's work as editor and author was performed outside the scope of his employment as a U.S. government employee. This work represents his personal and professional views and not necessarily those of the U.S. government.

This book was set in Minion Pro by Cenveo[®] Publisher Services. The editors were James F. Shanahan and Kim J. Davis. The production supervisor was Catherine H. Saggese; project management was provided by Anupriya Tyagi, Cenveo Publisher Services. The designer was Alan Barnett; the cover designer was Dreamit, Inc. RR Donnelly was printer and binder.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY. ADEOUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK. INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contributors	 	 XV
Preface	 	 xvii
Acknowledgments	 	 xix

SECTION 1 CARE OF THE HOSPITALIZED PATIENT

1	Electrolytes/Acid-Base Balance	1
2	Diagnostic Imaging in Internal Medicine	23
3	Procedures Commonly Performed by Internists	26
4	Principles of Critical Care Medicine	31
5	Pain and Its Management	35
6	Assessment of Nutritional Status	40
7	Enteral and Parenteral Nutrition	43
8	Transfusion and Pheresis Therapy	46
9	Palliative and End-of-Life Care	48

SECTION 2 MEDICAL EMERGENCIES

10	Cardiovascular Collapse and Sudden Death	57
11	Shock	61
12	Sepsis and Septic Shock	65
13	Acute Pulmonary Edema	69
14	Acute Respiratory Distress Syndrome	71
15	Respiratory Failure	73
16	Confusion, Stupor, and Coma	76
17	Stroke	82
18	Subarachnoid Hemorrhage	91
19	Increased Intracranial Pressure and Head Trauma	93
20	Spinal Cord Compression	98
21	Hypoxic-Ischemic Encephalopathy	100
22	Status Epilepticus	101
23	Diabetic Ketoacidosis and Hyperosmolar Coma	104
24	Hypoglycemia	107
25	Oncologic Emergencies	109
26	Anaphylaxis	114
27	Bites, Venoms, Stings, and Marine Poisonings	115

SECTION 3 COMMON PATIENT PRESENTATIONS

28	Fever, Hyperthermia, and Rash127
29	Generalized Fatigue131
30	Weight Loss135
31	Chest Pain137
32	Palpitations141
33	Dyspnea142
34	Cyanosis145
35	Cough and Hemoptysis146
36	Edema150
37	Abdominal Pain154
38	Nausea, Vomiting, and Indigestion158
39	Dysphagia162
40	Diarrhea, Malabsorption, and Constipation167
41	Gastrointestinal Bleeding174
42	Jaundice and Evaluation of Liver Function178
43	Ascites
44	Lymphadenopathy and Splenomegaly189
45	Anemia and Polycythemia194
46	Azotemia and Urinary Abnormalities197
47	Pain and Swelling of Joints203
48	Back and Neck Pain207
49	Headache215
50	Syncope
51	Dizziness and Vertigo226
52	Acute Visual Loss and Double Vision229
53	Weakness and Paralysis233
54	Tremor and Movement Disorders236
55	Aphasia239
56	Sleep Disorders241
57	Dysuria and Bladder Pain245

SECTION 4 OTOLARYNGOLOGY

58	Sore Throat, Earache, and Upper	
	Respiratory Symptoms24	7

SECTION 5 DERMATOLOGY

59	General Examination of the Skin	255
60	Common Skin Conditions	

SECTION 6 **HEMATOLOGY AND ONCOLOGY**

61	Examination of Blood Smears and Bone Marrow2	65
62	Red Blood Cell Disorders2	67
63	Leukocytosis and Leukopenia2	74
64	Bleeding and Thrombotic Disorders2	77
65	Myeloid Leukemias, Myelodysplasia, and Myeloproliferative Syndromes2	83
66	Lymphoid Malignancies2	93
67	Skin Cancer3	05
68	Head and Neck Cancer3	08
69	Lung Cancer3	10
70	Breast Cancer	16
71	Tumors of the Gastrointestinal Tract3	21
72	Genitourinary Tract Cancer3	33
73	Gynecologic Cancer3	38
74	Prostate Hyperplasia and Carcinoma3	42
75	Cancer of Unknown Primary Site3	45
76	Paraneoplastic Endocrine Syndromes3	48
77	Neurologic Paraneoplastic Syndromes	52

SECTION 7 INFECTIOUS DISEASES

78	Infections Acquired in Health Care Facilities	357
79	Infections in the Immunocompromised Host	362
80	Infective Endocarditis	372
81	Intraabdominal Infections	382
82	Infectious Diarrheas	386
83	Sexually Transmitted and Reproductive Tract Infections	399
84	Infections of the Skin, Soft Tissues, Joints, and Bones	415
85	Pneumococcal Infections	422
86	Staphylococcal Infections	425

87	Streptococcal/Enterococcal Infections, Diphtheria, and Infections Caused by Other Corynebacteria
	and Related Species
88	Meningococcal and Listerial Infections443
89	Infections Caused by Haemophilus, Bordetella, Moraxella, and HACEK Group Organisms448
90	Diseases Caused by Gram-Negative Enteric Bacteria and <i>Pseudomonas</i> 453
91	Infections Caused by Miscellaneous Gram-Negative Bacilli462
92	Anaerobic Infections469
93	Nocardiosis, Actinomycosis, and Whipple's Disease
94	Tuberculosis and Other Mycobacterial Infections482
95	Lyme Disease and Other Nonsyphilitic Spirochetal Infections494
96	Rickettsial Diseases
97	Mycoplasma pneumoniae, Legionella Species, and Chlamydia pneumoniae510
98	Chlamydia trachomatis and C. psittaci
99	Herpesvirus Infections
100	Cytomegalovirus and Epstein-Barr Virus Infections
101	Influenza and Other Viral Respiratory Diseases
102	Rubeola, Rubella, Mumps, and Parvovirus Infections538
103	Enteroviral Infections543
104	Insect- and Animal-Borne Viral Infections
105	HIV Infection and AIDS
105 106	
	HIV Infection and AIDS554 Fungal Infections568
106	HIV Infection and AIDS554 Fungal Infections568 <i>Pneumocystis</i> Infections

SECTION 8 CARDIOLOGY

110	Physical Examination of the Heart	.613
111	Electrocardiography	.618
112	Noninvasive Examination of the Heart	.622
113	Congenital Heart Disease in the Adult	.627

viii

114	Valvular Heart Disease	632
115	Cardiomyopathies and Myocarditis	639
116	Pericardial Disease	644
117	Hypertension	649
118	Metabolic Syndrome	656
119	ST-Segment Elevation Myocardial Infarction	658
120	Unstable Angina and Non-ST-Elevation	
	Myocardial Infarction	668
121	Chronic Stable Angina	672
122	Bradyarrhythmias	677
123	Tachyarrhythmias	679
124	Heart Failure and Cor Pulmonale	687
125	Diseases of the Aorta	693
126	Peripheral Vascular Disease	696
127	Pulmonary Hypertension	699

SECTION 9 PULMONOLOGY

128	Respiratory Function and Pulmonary Diagnostic Procedures	705
129	Asthma	711
130	Environmental Lung Diseases	715
131	Chronic Obstructive Pulmonary Disease	718
132	Pneumonia, Bronchiectasis, and Lung Abscess	722
133	Pulmonary Thromboembolism and Deep-Vein Thrombosis	730
134	Interstitial Lung Disease	734
135	Diseases of the Pleura and Mediastinum	740
136	Disorders of Ventilation	744
137	Sleep Apnea	745

SECTION 10 NEPHROLOGY

138	Acute Renal Failure747
139	Chronic Kidney Disease and Uremia752
140	Dialysis754
141	Renal Transplantation756

142	Glomerular Diseases	.759
143	Renal Tubular Disease	.769
144	Urinary Tract Infections and Interstitial Cystitis	.775
145	Nephrolithiasis	.779
146	Urinary Tract Obstruction	.782

SECTION 11 GASTROENTEROLOGY

147	Peptic Ulcer and Related Disorders	785
148	Inflammatory Bowel Diseases	790
149	Colonic and Anorectal Diseases	794
1 50	Cholelithiasis, Cholecystitis, and Cholangitis	799
151	Pancreatitis	804
152	Acute Hepatitis	809
153	Chronic Hepatitis	816
154	Cirrhosis and Alcoholic Liver Disease	826
155	Portal Hypertension	831

SECTION 12 ALLERGY, CLINICAL IMMUNOLOGY, AND RHEUMATOLOGY

156	Diseases of Immediate-Type Hypersensitivity835		
157	Primary Immune Deficiency Diseases	.840	
158	Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Other Connective Tissue Diseases	.843	
159	Vasculitis	.850	
160	Ankylosing Spondylitis	.854	
161	Psoriatic Arthritis	.857	
162	Reactive Arthritis	.859	
163	Osteoarthritis	.861	
164	Gout, Pseudogout, and Related Diseases	.863	
165	Other Musculoskeletal Disorders	.867	
166	Sarcoidosis	.870	
167	Amyloidosis	.873	

SECTION 13 ENDOCRINOLOGY AND METABOLISM

Disorders of the Anterior Pituitary and Hypothalamus877
Diabetes Insipidus and Syndrome of Inappropriate
Antidiuretic Hormone883

170	Thyroid Gland Disorders8	86
171	Adrenal Gland Disorders8	95
172	Obesity9	01
173	Diabetes Mellitus9	04
174	Disorders of the Male Reproductive System9	12
175	Disorders of the Female Reproductive System9	17
176	Hypercalcemia and Hypocalcemia9	24
177	Osteoporosis and Osteomalacia9	31
178	Hypercholesterolemia and Hypertriglyceridemia9	36
179	Hemochromatosis, Pornhyrias, and Wilson's Disease	42

SECTION 14 NEUROLOGY

180	The Neurologic Examination	947
181	Seizures and Epilepsy	956
182	Dementia	968
183	Parkinson's Disease	976
184	Ataxic Disorders	981
185	ALS and Other Motor Neuron Diseases	984
186	Autonomic Nervous System Disorders	988
187	Trigeminal Neuralgia, Bell's Palsy, and Other Cranial Nerve Disorders	995
188	Spinal Cord Diseases	1002
189	Tumors of the Nervous System	1008
190	Multiple Sclerosis	1012
191	Acute Meningitis and Encephalitis	1020
192	Chronic and Recurrent Meningitis	1031
193	Peripheral Neuropathies, Including Guillain-Barré Syndrome	1040
194	Myasthenia Gravis	1050
195	Muscle Diseases	1053

SECTION 15 PSYCHIATRY AND SUBSTANCE ABUSE

1 96	Psychiatric Disorders	1063
197	Psychiatric Medications	1071
198	Eating Disorders	1079

199	Alcohol Use Disorder 10			
200	Narcotic Abuse 1	084		
SECT	TION 16 DISEASE PREVENTION AND HEALTH MAINTENANCE			
201	Routine Disease Screening 1	087		
202	Cardiovascular Disease Prevention 1	092		
203	3 Prevention and Early Detection of Cancer			
204	4 Smoking Cessation 110			
205	5 Women's Health 1104			
SECT	TION 17 ADVERSE DRUG REACTIONS			
206	Adverse Drug Reactions 1	107		
Inde	x1	109		

NOTICE

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.

ASSOCIATE EDITORS

S. ANDREW JOSEPHSON, MD

Professor; Senior Executive Vice Chairman, Department of Neurology, University of California, San Francisco, San Francisco, California

CAROL A. LANGFORD, MD, MHS

Harold C. Schott Endowed Chair; Director, Center for Vasculitis Care and Research, Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, Ohio

LEONARD S. LILLY, MD

Professor of Medicine, Harvard Medical School; Chief, Brigham and Women's/ Faulkner Cardiology, Brigham and Women's Hospital, Boston, Massachusetts

DAVID B. MOUNT, MD

Associate Physician, Brigham and Women's Hospital; Assistant Professor of Medicine, Harvard Medical School; Renal Division, Brigham and Women's Hospital, Boston, Massachusetts

EDWIN K. SILVERMAN, MD, PhD

Professor of Medicine; Chief, Channing Division of Network Medicine, Harvard Medical School, Boston, Massachusetts

NEERAJ K. SURANA, MD, PhD

Instructor in Pediatrics, Harvard Medical School; Assistant in Medicine, Boston Children's Hospital, Boston, Massachusetts

Numbers indicate the chapters written or co-written by the contributor.

ANTHONY S. FAUCI, MD 26, 42, 43, 47, 59, 60, 105, 150-167

GREGORY K. FOLKERS, MPH

105, 153, 159

STEPHEN L. HAUSER, MD 3, 5, 16-22, 48-56, 77, 180-200, 204

J. LARRY JAMESON, MD, PhD 2, 6, 7, 23, 24, 29, 30, 118, 168-179, 198, 201, 205

S. ANDREW JOSEPHSON, MD 5, 16-22, 48-56, 77, 180-197, 199, 200, 204

DENNIS L. KASPER, MD 12, 27, 28, 57, 58, 78-104, 106-109, 132, 144

SHYAMASUNDARAN KOTTILIL, MD

CAROL A. LANGFORD, MD 26, 42, 43, 47, 59, 60, 105, 150-167

LEONARD S. LILLY, MD 10, 11, 13, 31, 32, 34, 110-117, 119-127

DAN L. LONGO, MD

8, 9, 25, 37-41, 44, 45, 61-76, 147-149, 203

JOSEPH LOSCALZO, MD, PhD

4, 10, 11, 13-15, 31-36, 46, 110-117, 119-143, 145, 146, 202

DAVID B. MOUNT, MD

36, 46, 138-143, 145, 146

EDWIN K. SILVERMAN, MD, PhD

4, 14, 15, 33, 35, 128-137

NEERAJ K. SURANA, MD, PhD

12, 27, 28, 57, 58, 78-104, 106-109, 132, 144

PREFACE

Harrison's Principles of Internal Medicine (HPIM), the premier medical textbook for students and clinicians, provides a detailed body of information important to an understanding of the biological and clinical aspects of quality patient care. Harrison's Manual of Medicine aims to fulfill a different need: As a concise, fact-rich resource for bedside care, the Manual presents clinical information drawn from the 19th edition of HPIM, covering the key features of the diagnosis, clinical manifestations, and treatment of the major diseases that are likely to be encountered on a medical service.

First published in 1988, the *Manual* has become ever more useful with the rapid expansion of medical knowledge and the increasing time constraints associated with heavy patient-care responsibilities in modern health care settings. The *Manual's* popularity and value reflect its abbreviated format, which has proven extremely useful for initial diagnosis and management in time-restricted clinical settings. In particular, the book's full-color format allows readers to locate and use information quickly. In addition, numerous tables and graphics facilitate decisions at the point of care.

The *Manual* has been written for easy and seamless reference to the full text of the 19th edition of *HPIM*, and the Editors recommend that the full textbook be consulted as soon as time allows. Although not a substitute for in-depth analysis of clinical problems, the *Manual* serves as a ready source of informative summaries that will be useful "on the spot" and that will prepare the reader for more in-depth analysis is through more extensive reading at a later time. Like previous editions, this latest edition of the *Manual* is intended to keep up with the continual evolution of internal medicine practices. To this end, every chapter from the prior edition has been closely reviewed and updated, with substantial revisions and new chapters provided where appropriate. The 19th edition of the *Manual* is available in print and in portable format for the smartphone and tablet.

The Editors and McGraw-Hill wish to thank their editorial staff, whose assistance and patience made this edition come out in a timely manner:

From the Editors' offices: Patricia Duffey; Gregory K. Folkers; Andrew Josephson, MD; H. Clifford Lane, MD; Carol A. Langford, MD; Julie B. McCoy; Anita Ortiz; Elizabeth Robbins, MD; Marie E. Scurti; and Stephanie Tribuna.

From McGraw-Hill: James F. Shanahan, Kim J. Davis, and Catherine H. Saggese.

The Editors also wish to acknowledge contributors to past editions of this *Manual*, whose work formed the basis for many of the chapters herein: Tamar F. Barlam, MD; Gerhard P. Baumann, MD; Eugene Braunwald, MD; Punit Chadha, MD; Joseph B. Martin, MD, PhD; Michael Sneller, MD; Kenneth Tyler, MD; Sophia Vinogradov, MD; and Jean Wilson, MD.

SECTION 1

Electrolytes/Acid-Base Balance

SODIUM

Disturbances of sodium concentration [Na⁺] result in most cases from abnormalities of H_2O homeostasis, which change the relative ratio of Na⁺ to H_2O . Disorders of Na⁺ balance per se are, in contrast, associated with changes in extracellular fluid volume, either hypo- or hypervolemia. Maintenance of "arterial circulatory integrity" is achieved in large part by changes in urinary sodium excretion and vascular tone, whereas H_2O balance is achieved by changes in both H_2O intake and urinary H_2O excretion (Table 1-1). Confusion can result from the coexistence of defects in both H_2O and Na⁺ balance. For example, a hypovolemic pt may have an appropriately low urinary Na⁺ due to increased renal tubular reabsorption of filtered NaCl; a concomitant increase in circulating arginine vasopressin (AVP)—part of the defense of effective circulating volume (Table 1-1)—will cause the renal retention of ingested H_2O and the development of hyponatremia.

HYPONATREMIA

This is defined as a serum [Na⁺] <135 mmol/L and is among the most common electrolyte abnormalities encountered in hospitalized pts. Symptoms include nausea, vomiting, confusion, lethargy, and disorientation; if severe (<120 mmol/L) and/or abrupt, seizures, central herniation, coma, or death may result (see Acute Symptomatic Hyponatremia, below). Hyponatremia is almost always the result of an increase

TABLE 1-1 OSMOREGULATION VERSUS VOLUME REGULATION		
	Osmoregulation	Volume Regulation
What is sensed	Plasma osmolality	Arterial filling
Sensors	Hypothalamic osmoreceptors	Carotid sinus
		Afferent arteriole
		Atria
Effectors	AVP	Sympathetic nervous system
	Thirst	Renin-angiotensin-aldosterone system
		ANP/BNP
		AVP
What is affected	l Urine osmolality	Urinary sodium excretion
	H ₂ O intake	Vascular tone

Note: See text for details.

Abbreviations: ANP, atrial natriuretic peptide; AVP, arginine vasopressin; BNP, brain natriuretic peptide.

Source: Adapted from Rose BD, Black RM (eds): *Manual of Clinical Problems in Nephrology*. Boston, Little Brown, 1988; with permission.

in circulating AVP and/or increased renal sensitivity to AVP; a notable exception is in the setting of low solute intake ("beer potomania"), wherein a markedly reduced urinary solute excretion is inadequate to support the excretion of sufficient free H_2O . The serum $[Na^+]$ by itself does not yield diagnostic information regarding total-body Na^+ content; hyponatremia is primarily a disorder of H_2O homeostasis. Pts with hyponatremia are thus categorized diagnostically into three groups, depending on their clinical volume status: hypovolemic, euvolemic, and hypervolemic hyponatremia (Fig. 1-1). All three forms of hyponatremia share an exaggerated, "nonosmotic" increase in circulating AVP, in the setting of reduced serum osmolality. Notably, hyponatremia is often multifactorial; clinically important nonosmotic stimuli that can cause a release of AVP and increase the risk of hyponatremia include drugs, pain, nausea, and strenuous exercise.

Laboratory investigation of a pt with hyponatremia should include a measurement of serum osmolality to exclude "pseudohyponatremia" due to hyperlipidemia or hyperproteinemia. Serum glucose also should be measured; serum Na⁺ falls by 1.4 m*M* for every 100-mg/dL increase in glucose, due to glucose-induced H₂O efflux from cells. Hyperkalemia may suggest adrenal insufficiency or hypoaldosteronism; increased blood urea nitrogen (BUN) and creatinine may suggest a renal cause. Urine electrolytes and osmolality are also critical tests in the initial evaluation of hyponatremia. In particular, a urine Na⁺ <20 meq/L is consistent with hypovolemic hyponatremia in the clinical absence of a "hypervolemic," Na⁺-avid syndrome such as congestive heart failure (CHF) (Fig. 1-1). Urine osmolality <100 mosmol/kg is suggests that AVP excess is playing a more dominant role, whereas intermediate values are more consistent with multifactorial pathophysiology (e.g., AVP excess with a component of polydipsia). Finally, in the right clinical setting, thyroid, adrenal, and pituitary function should also be tested.

Hypovolemic Hyponatremia

Hypovolemia from both renal and extrarenal causes is associated with hyponatremia. Renal causes of hypovolemia include primary adrenal insufficiency and hypoaldosteronism, salt-losing nephropathies (e.g., reflux nephropathy, nonoliguric acute tubular necrosis), diuretics, and osmotic diuresis. Random "spot" urine Na⁺ is typically >20 meq/L in these cases but may be <20 meq/L in diureticassociated hyponatremia if tested long after administration of the drug. Nonrenal causes of hypovolemic hyponatremia include GI loss (e.g., vomiting, diarrhea, tube drainage) and integumentary loss (sweating, burns); urine Na⁺ is typically <20 meq/L in these cases.

Hypovolemia causes profound neurohumoral activation, inducing systems that preserve arterial circulatory integrity, such as the renin-angiotensin-aldosterone (RAA) axis, the sympathetic nervous system, and AVP (Table 1-1). The increase in circulating AVP serves to increase the retention of ingested free H_2O , leading to hyponatremia. The optimal treatment of hypovolemic hyponatremia is volume administration, generally as isotonic crystalloid, i.e., 0.9% NaCl ("normal saline"). If the history suggests that hyponatremia has been "chronic," i.e., present for 48 h, care should be taken to avoid overcorrection (see below), which can easily occur as AVP levels plummet in response to volume-resuscitation; if necessary, the administration of desmopressin (DDAVP) and free water can reinduce or arrest the correction of hyponatremia (see below).

Hypervolemic Hyponatremia

The edematous disorders (CHF, hepatic cirrhosis, and nephrotic syndrome) are often associated with mild to moderate degrees of hyponatremia ($[Na^+] = 125-135 \text{ mmol/L}$); occasionally, pts with severe CHF or cirrhosis may present with serum $[Na^+]$ <120 mmol/L. The pathophysiology is similar to that in hypovolemic hyponatremia, except that arterial filling and circulatory integrity are decreased due to the specific

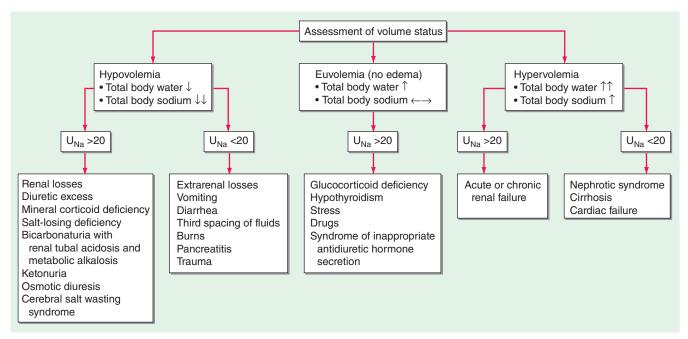


FIGURE 1-1 The diagnostic approach to hyponatremia. See text for details. (From S Kumar, T Berl: Diseases of water metabolism, in Atlas of Diseases of the Kidney, RW Schrier [ed]. Philadelphia, Current Medicine, Inc, 1999; with permission.)

etiologic factors, i.e., cardiac dysfunction, peripheral vasodilation in cirrhosis, and hypoalbuminemia in nephrotic syndrome. The degree of hyponatremia is an indirect index of the associated neurohumoral activation (Table 1-1) and an important prognostic indicator in hypervolemic hyponatremia.

Management consists of treatment of the underlying disorder (e.g., afterload reduction in heart failure, large-volume paracentesis in cirrhosis, immunomodulatory therapy in some forms of nephrotic syndrome), Na⁺ restriction, diuretic therapy, and, in some pts, H₂O restriction. Vasopressin antagonists (e.g., tolvaptan and conivaptan) are also effective in normalizing hyponatremia associated with both cirrhosis and CHF.

Euvolemic Hyponatremia

The syndrome of inappropriate ADH secretion (SIADH) characterizes most cases of euvolemic hyponatremia. Other causes of euvolemic hyponatremia include hypothyroidism and secondary adrenal insufficiency due to pituitary disease; notably, repletion of glucocorticoid levels in the latter may cause a rapid drop in circulating AVP levels and overcorrection of serum [Na⁺] (see below).

Common causes of SIADH include pulmonary disease (e.g., pneumonia, tuberculosis, pleural effusion) and central nervous system (CNS) diseases (e.g., tumor, subarachnoid hemorrhage, meningitis); SIADH also occurs with malignancies (e.g., small cell carcinoma of the lung) and drugs (e.g., selective serotonin reuptake inhibitors, tricyclic antidepressants, nicotine, vincristine, chlorpropamide, carbamazepine, narcotic analgesics, antipsychotic drugs, cyclophosphamide, ifosfamide). Optimal treatment of euvolemic hyponatremia includes treatment of the underlying disorder. H₂O restriction to <1 L/d is a cornerstone of therapy, but may be ineffective or poorly tolerated. However, vaso-pressin antagonists are predictably effective in normalizing serum [Na*] in SIADH. Alternatives include the administration of loop diuretics to inhibit the countercurrent mechanism and reduce urinary concentration, combined with oral salt tablets to abrogate diuretic-induced salt loss and attendant hypovolemia.

Acute Symptomatic Hyponatremia

Acute symptomatic hyponatremia is a medical emergency; a sudden drop in serum [Na⁺] can overwhelm the capacity of the brain to regulate cell volume, leading to cerebral edema, seizures, and death. Women, particularly premenopausal women, are particularly prone to such sequelae; neurologic consequences are comparatively rare in male pts. Many of these pts develop hyponatremia from iatrogenic causes, including hypotonic fluids in the postoperative period, prescription of a thiazide diuretic, colonoscopy preparation, or intraoperative use of glycine irrigants. Polydip-sia with an associated cause of increased AVP may also cause acute hyponatremia, as can increased H₂O intake in the setting of strenuous exercise, e.g., a marathon. The recreational drug Ecstasy (methylenedioxymethamphetamine [MDMA]) can cause acute hyponatremia, rapidly inducing both AVP release and increased thirst.

Severe symptoms may occur at relatively modest levels of serum [Na⁺], e.g., in the mid-120s. Nausea and vomiting are common premonitory symptoms of more severe sequelae. An important concomitant is respiratory failure, which may be hypercapnic due to CNS depression or normocapnic due to neurogenic, noncardiogenic pulmonary edema; the attendant hypoxemia amplifies the impact of hyponatremic encephalopathy.

TREATMENT HYPONATREMIA

Three considerations are critical in the therapy of hyponatremia. First, the presence, absence, and/or severity of symptoms determine the urgency of therapy (see above for acute symptomatic hyponatremia). Second, pts with hyponatremia that has been present for >48 h ("chronic hyponatremia") are at risk for osmotic demyelination syndrome, typically central pontine myelinolysis, if serum Na⁺ is corrected by >10–12 mM within the first 24 h and/or by >18 mM within the first 48 h. Third, the response to interventions, such as hypertonic saline or vasopressin antagonists, can be highly unpredictable, such that frequent monitoring of serum Na⁺ (initially every 2–4 h) is imperative.

Treatment of acute symptomatic hyponatremia should include hypertonic saline to acutely increase serum Na⁺ by 1-2 mM/h to a total increase of 4-6 mM; this increase is typically sufficient to alleviate acute symptoms, after which corrective guidelines for "chronic" hyponatremia are appropriate (see below). A number of equations and algorithms have been developed to estimate the required rate of hypertonic solution; one popular approach is to calculate a "Na⁺ deficit," where the Na⁺ deficit = $0.6 \times \text{body}$ weight \times (target [Na⁺] – starting [Na⁺]). Regardless of the method used to determine the rate of administered hypertonic saline, the increase in serum [Na⁺] can be highly unpredictable, due to rapid changes in the underlying physiology; serum [Na⁺] should be monitored every 2–4 h during and after treatment with hypertonic saline. The administration of supplemental O, and ventilatory support can also be critical in acute hyponatremia, if pts develop acute pulmonary edema or hypercapnic respiratory failure. IV loop diuretics will help treat associated acute pulmonary edema and will also increase free H₂O excretion by interfering with the renal countercurrent multiplier system. It is noteworthy that vasopressin antagonists do not have a role in the management of acute hyponatremia.

The rate of correction should be comparatively slow in *chronic* hyponatremia (<10–12 m*M* in the first 24 h and <18 m*M* in the first 48 h), so as to avoid osmotic demyelination syndrome. Vasopressin antagonists are highly effective in SIADH and in hypervolemic hyponatremia due to heart failure or cirrhosis. Abnormalities in liver function tests have been reported during the use of tolvaptan; hence, therapy with this agent should be restricted to 1–2 months with close monitoring of liver function. Should pts overcorrect serum [Na⁺] in response to vasopressin antagonists, hypertonic saline, or isotonic saline (in chronic hypovolemic hyponatremia), hyponatremia can be safely reinduced or stabilized by the administration of the vasopressin *agonist* DDAVP and the administration of free H₂O, typically IV D₅W; again, close monitoring of the response of serum [Na⁺] is essential to adjust therapy. Alternatively, the treatment of pts with marked hyponatremia can be initiated with the twice-daily administration of hypertonic saline to slowly correct the serum [Na⁺] in a more controlled fashion, thus reducing upfront the risk of overcorrection.

HYPERNATREMIA

This is rarely associated with hypervolemia, where the association is typically iatrogenic, e.g., administration of hypertonic sodium bicarbonate. More commonly, hypernatremia is the result of a combined H_2O and volume deficit, with losses of H_2O in excess of Na⁺. Elderly individuals with reduced thirst and/or diminished access to fluids are at the highest risk of hypernatremia due to decreased free H_2O intake. Common causes of renal H_2O loss are osmotic diuresis secondary to hyper-glycemia, postobstructive diuresis, or drugs (radiocontrast, mannitol, etc.); H_2O diuresis occurs in central or nephrogenic diabetes insipidus (DI) (Chap. 168). In pts with hypernatremia due to calculation of the baseline H_2O deficit (Table 1-2).

TREATMENT HYPERNATREMIA

The approach to correction of hypernatremia is outlined in Table 1-2. As with hyponatremia, it is advisable to correct the H_2O deficit slowly to avoid neurologic compromise, decreasing the serum [Na⁺] over 48–72 h. Depending on the blood pressure or clinical volume status, it may be appropriate to initially treat

TABLE 1-2 CORRECTION OF HYPERNATREMIA

H₂O Deficit

- 1. Estimate TBW: 50-60% body weight (kg) depending on body composition
- 2. Calculate free-water deficit: [(Na⁺ 140)/140] × TBW
- 3. Administer deficit over 48-72 h

Ongoing H₂O Losses

4. Calculate free-water clearance, C_aH₂O:

$$C_{e}H_{2}O = V\left(1 - \frac{U_{Na} + U_{K}}{S_{Na}}\right)$$

where V is urinary volume, $U_{_{Na}}$ is urinary [Na^+], $U_{_{K}}$ is urinary [K^+], and SNa is serum [Na^+].

Insensible Losses

5. ~10 mL/kg per day: less if ventilated, more if febrile

Total

6. Add components to determine H₂O deficit and ongoing H₂O loss; correct the H₂O deficit over 48–72 h and replace daily H₂O loss.

Abbreviation: TBW, total-body water.

with hypotonic saline solutions (1/4 or 1/2 normal saline); blood glucose should be monitored in pts treated with large volumes of D_xW, should hyperglycemia ensue. Calculation of urinary electrolyte-free H,O clearance is helpful to estimate daily, ongoing loss of free H₂O in pts with nephrogenic or central DI (Table 1-2). Other forms of therapy may be helpful in selected cases of hypernatremia. Pts with central DI may respond to the administration of intranasal DDAVP. Stable pts with nephrogenic DI may reduce their polyuria with hydrochlorothiazide (12.5-50 mg/d). This diuretic is thought to increase proximal H₃O reabsorption and decrease distal solute delivery, thus reducing polyuria. Pts with lithiumassociated nephrogenic DI may respond to amiloride (2.5-10 mg/d), which decreases the entry of lithium into principal cells in the distal nephron by inhibiting the amiloride-sensitive epithelial sodium channel (ENaC). Notably, however, most pts with lithium-induced nephrogenic DI can adequately accommodate by increasing their H₂O intake. Occasionally, nonsteroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors have also been used to treat polyuria associated with nephrogenic DI, reducing the negative effect of local prostaglandins on urinary concentration; however, the nephrotoxic potential of NSAIDs typically makes them a less attractive therapeutic option.

POTASSIUM

Because potassium (K⁺) is the major intracellular cation, discussion of disorders of K⁺ balance must take into consideration changes in the exchange of intra- and extracellular K⁺ stores. (Extracellular K⁺ constitutes <2% of total-body K⁺ content.) Insulin, β_2 -adrenergic agonists, and alkalosis tend to promote K⁺ uptake by cells; acidosis, insulinopenia, or acute hyperosmolality (e.g., after treatment with mannitol or D₅₀W) promotes the efflux or reduced uptake of K⁺. A corollary is that tissue necrosis and the attendant release of K⁺ can cause severe hyperkalemia, particularly in the setting of acute kidney injury. Hyperkalemia due to rhabdomyolysis is thus particularly common, due to the enormous store of K⁺ in muscle; hyperkalemia may also be prominent in tumor lysis syndrome.

The kidney plays a dominant role in K⁺ excretion. Although K⁺ is transported along the entire nephron, it is the principal cells of the connecting segment and cortical collecting duct that play a dominant role in K⁺ excretion. Apical Na⁺ entry into principal cells via the amiloride-sensitive epithelial Na⁺ channel (ENaC) generates a lumen-negative potential difference, which drives passive K⁺ exit through apical K⁺ channels. *This relationship is key to the bedside understanding of potassium disorders*. For example, decreased distal delivery of Na⁺ tends to blunt the ability to excrete K⁺, leading to hyperkalemia. Abnormalities in the renin-angiotensin-aldosterone system (RAAS) can cause both hypo- and hyperkalemia; aldosterone has a major influence on potassium excretion, increasing the activity of ENaC channels and the basolateral Na+/K+-ATPase, thus amplifying the driving force for K⁺ secretion across the luminal membrane of principal cells.

HYPOKALEMIA

Major causes of hypokalemia are outlined in Table 1-3. Atrial and ventricular arrhythmias are the most serious health consequences of hypokalemia. Pts with concurrent Mg deficit and/or digoxin therapy are at a particularly increased risk of arrhythmias. Hypokalemia can directly prolong the QT interval and is a significant cofactor in arrhythmias due to other causes of a prolonged QT interval. Other clinical manifestations include muscle weakness, which may be profound at serum [K⁺]

TABLE 1-3 CAUSES OF HYPOKALEMIA

- I. Decreased intake
 - A. Starvation
 - B. Clay ingestion
- II. Redistribution into cells
 - A. Acid-base
 - 1. Metabolic alkalosis
 - B. Hormonal
 - 1. Insulin
 - 2. Increased β_2 -adrenergic sympathetic activity: post–myocardial infarction, head injury, theophylline
 - 3. β₂-Adrenergic agonists: bronchodilators, tocolytics
 - 4. α-Adrenergic antagonists
 - 5. Thyrotoxic periodic paralysis
 - 6. Downstream stimulation of Na⁺/K⁺-ATPase: theophylline, caffeine
 - C. Anabolic state
 - 1. Vitamin B₁₂ or folic acid administration (red blood cell production)
 - 2. Granulocyte-macrophage colony-stimulating factor (white blood cell production)
 - 3. Total parenteral nutrition
 - D. Other
 - 1. Pseudohypokalemia
 - 2. Hypothermia
 - 3. Familial hypokalemic periodic paralysis
 - 4. Barium toxicity: systemic inhibition of "leak" K⁺ channels

TABLE 1-3 CAUSES OF HYPOKALEMIA (CONTINUED)

- III. Increased loss
 - A. Nonrenal
 - 1. Gastrointestinal loss (diarrhea)
 - 2. Integumentary loss (sweat)
 - B. Renal
 - Increased distal flow and distal Na⁺ delivery: diuretics, osmotic diuresis, salt-wasting nephropathies
 - 2. Increased secretion of potassium
 - a. Mineralocorticoid excess: primary hyperaldosteronism (APAs), PAH or UAH, IHA due to bilateral adrenal hyperplasia and adrenal carcinoma, familial hyperaldosteronism (FH-I, FH-II, congenital adrenal hyperplasias), secondary hyperaldosteronism (malignant hypertension, renin-secreting tumors, renal artery stenosis, hypovolemia), Cushing's syndrome, Bartter's syndrome, Gitelman's syndrome
 - b. Apparent mineralocorticoid excess: genetic deficiency of 11β-dehydrogenase-2 (syndrome of apparent mineralocorticoid excess), inhibition of 11β-dehydrogenase-2 (glycyrrhetinic/ glycyrrhizinic acid and/or carbenoxolone; licorice, food products, drugs), Liddle's syndrome (genetic activation of ENaC)
 - c. Distal delivery of nonreabsorbed anions: vomiting, nasogastric suction, proximal renal tubular acidosis, diabetic ketoacidosis, glue sniffing (toluene abuse), penicillin derivatives (penicillin, nafcillin, dicloxacillin, ticarcillin, oxacillin, and carbenicillin)
 - 3. Magnesium deficiency, amphotericin B, Liddle's syndrome

Abbreviations: APA, aldosterone-producing adenoma; ENaC, epithelial Na⁺ channels; IHA, idiopathic hyperaldosteronism; PAH, primary adrenal hyperplasia; UAH, unilateral adrenal hyperplasia.

<2.5 mmol/L, and, if hypokalemia is sustained, hypertension, ileus, polyuria, renal cysts, and even renal failure.

The cause of hypokalemia is usually obvious from history, physical examination, and/or basic laboratory tests. However, persistent hypokalemia may require a more thorough, systematic evaluation (Fig. 1-2). Initial laboratory evaluation should include electrolytes, BUN, creatinine, serum osmolality, Mg^{2+} , and Ca^{2+} , a complete blood count, and urinary pH, osmolality, creatinine, and electrolytes. Serum and urine osmolality are required for calculation of the transtubular K⁺ gradient (TTKG), which should be <3 in the presence of hypokalemia (see also Hyperkalemia). Alternatively, a urinary K⁺-to-creatinine ratio of >13-mmol/g creatinine (>1.5-mmol/mmol creatinine) is compatible with excessive K⁺ excretion. Further tests such as urinary Mg²⁺ and Ca²⁺ and/or plasma renin and aldosterone levels may be necessary in specific cases.

TREATMENT HYPOKALEMIA

The goals of therapy in hypokalemia are to prevent life-threatening and/or serious chronic consequences, to replace the associated K^+ deficit, and to correct the underlying cause and/or mitigate future hypokalemia. The urgency of therapy depends on the severity of hypokalemia, associated clinical factors (cardiac disease, digoxin therapy, etc.), and the rate of decline in serum K^+ . Pts with a

prolonged QT interval and/or other risk factors for arrhythmia should be monitored by continuous cardiac telemetry during repletion. Urgent but cautious K⁺ replacement should be considered in pts with severe redistributive hypokalemia (plasma K⁺ concentration <2.5 m/l) and/or when serious complications ensue; however, this approach has a risk of rebound hyperkalemia following acute resolution of the underlying cause. When excessive activity of the sympathetic nervous system is thought to play a dominant role in redistributive hypokalemia, as in thyrotoxic periodic paralysis, theophylline overdose, and acute head injury, high-dose propranolol (3 mg/kg) should be considered; this nonspecific β -adrenergic blocker will correct hypokalemia is refractory to correction in the presence of Mg⁺⁺ deficiency, which also should be corrected when present; renal wasting of both cations may be particularly prominent after renal tubular injury, e.g., from cisplatin nephrotoxicity.

Oral replacement with K⁺-Cl⁻ is the mainstay of therapy in hypokalemia. Potassium phosphate, oral or IV, may be appropriate in pts with combined hypokalemia and hypophosphatemia. Potassium bicarbonate or potassium citrate should be considered in pts with concomitant metabolic acidosis. The deficit of K⁺ and the rate of correction should be estimated as accurately as possible; renal function, medications, and comorbid conditions such as diabetes should also be considered so as to gauge the risk of overcorrection. In the absence of abnormal K⁺ redistribution, the total deficit correlates with serum K⁺ such that serum K⁺ drops by approximately 0.27 mM for every 100-mmol reduction in total-body stores. Notably, given the delay in redistributing potassium into intracellular compartments, this deficit must be replaced gradually over 24-48 h, with frequent monitoring of plasma K⁺ concentration to avoid transient over-repletion and transient hyperkalemia if otherwise appropriate. If hypokalemia is severe (<2.5 mmol/L) and/or if oral supplementation is not feasible or tolerated, IV KCI can be administered through a central vein with cardiac monitoring in an intensive care setting, at rates that should not exceed 20 mmol/h. KCl should always be administered in saline solutions, rather than dextrose; the dextrose-induced increase in insulin can acutely exacerbate hypokalemia.

Strategies to minimize K⁺ losses should also be considered. These measures may include minimizing the dose of non-K⁺-sparing diuretics, restricting Na⁺ intake, and using clinically appropriate combinations of non-K⁺-sparing and K⁺-sparing medications (e.g., loop diuretics with angiotensin-converting enzyme inhibitors).

HYPERKALEMIA

Causes are outlined in Table 1-4; in most cases, hyperkalemia is due to decreased renal K⁺ excretion. However, increases in dietary K⁺ intake can have a major effect in susceptible pts, e.g., diabetics with hyporeninemic hypoaldosteronism and chronic kidney disease (CKD). Drugs that impact on the RAA axis are also a major cause of hyperkalemia.

The first priority in the management of hyperkalemia is to assess the need for emergency treatment (ECG changes and/or K⁺ \geq 6.0 mM). This should be followed by a comprehensive workup to determine the cause (Fig. 1-3). History and physical examination should focus on medications (e.g., ACE inhibitors, NSAIDs, trimethoprim/sulfamethoxazole), diet and dietary supplements (e.g., salt substitute), risk factors for acute kidney failure, reduction in urine output, blood pressure, and volume status. Initial laboratory tests should include electrolytes, BUN, creatinine, serum osmolality, Mg²⁺, and Ca²⁺, a complete blood count, and urinary pH, osmolality, creatinine, and electrolytes. A urine [Na⁺] <20 meq/L suggests that distal Na⁺ delivery is a limiting factor in K⁺ excretion;